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A review of Wigner's time reversal is presented and some important aspects 
are emphasized. The subject is introduced via classical mechanics. Non- 
physical statements as "time running backwards" are avoided. Comments 
are made on the roles of time and of the operator ih(O/~t) in quantum mech- 
anics. The role of symmetries and conservation laws and some properties of 
the time-reversed states are discussed. 

1. T I M E  R E V E R S A L  IN  C L A S S I C A L  M E C H A N I C S  

To illustrate the principles involved in time reversal, let us consider a 
simple problem in classical mechanics. Suppose a particle is moving along a 
trajectory (Figure 1) in a conservative field o f  force. The equation of  mot ion 
is 

d2r 
. . . . . .  v v  (1 .1 )  m dt 2 

Let r~(0) and p~(0) be the position and momen tum of  the particle at the time 
t = 0. At  this instant let us start the motion of  an identical particle with 
position and m o m e n t u m  given by r~(0) = r~(0) and pH(0) = -p~(0). I f  the 
second particle retraces the trajectory, arriving at a later time t = t2 to the 
position of  the first particle at t = - t 2  with opposite momentum,  we say 
that  the equation o f  mot ion  underlying the process is invariant under time 
reversal. That  is, if the equations o f  mot ion allow r(t) as a possible trajectory 
for the particle, then r ( - t )  is also allowed. 

We could instead speak of  reversal of  mot ion since it is realized with 
the time developing normally but reversing the momentum.  Speaking about  
time running backwards could arise objections with respect to reversing the 
flow of  time in an actual experiment. To understand time reversal one does 
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Fig. 1. Two classical trajectories I and II that correspond by time reversal. The two 
trajectories coincide but are shown separated for clarity. 

not  need to think in terms of  time flowing backwards or in such refinements 
as the motion of  the hands o f  the clock being reversed. The process could be 
illustrated by a film which when run backwards shows a mot ion compatible 
with the equations o f  motion,  that  is, as physically possible as the original. 
The improbabili ty of  the reversed mot ion does not  worry us. It is enough 
that the process is, in principle, a possible one. Mathematically, once we 
know r~(t) we can express this correspondence by 

ri i ( t )  = r i ( -  t)  

Considering the velocities we may write 

[drI(t)~ 
vi(t)  = \ at /~ 

v~(t) = lira rH(t + At) - rn(t)  
At~O At 

= lim r~( -  t - At) - r : ( -  t) [dr~(t)~ = - v~(- t) 

So 

px~(t) = - p ~ ( -  t)  

We can say that the time-reversed state o f  the particle is defined by 

rsz(t) = r i ( -  t) 

p~(t) = --p~(--t)  

Of  course resulting f rom the transformations o f  r and p the angular 
momentum L = r x p changes sign. 

In  general, for a system described by the generalized coordinates qi and 
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generalized momenta p~, assuming that the Hamiltonian Hz(q~, PO does not 
depend explicitly on time, we may write the equations of motion 

dqi 8gi(qi, PI) m 

dt ~PI 

dp~ 8 H~( q~, PO 
dt ~q~ 

(1.2) 

Let us suppose that another system II exists, so that for each solution q~(t), 
p~(t) of (1.2), a time-reversed solution 

qli(t) = qI(-- t) (1.3) 
p~(t) = --p~(--t) 

is allowed, satisfying 

[dqn(t)~ = _{dq~(t)~ = ~ H i ( q i ( - t ) , p i ( - t ) )  

! t \ dt ] - t  8p i ( - t )  

8 H~( qn( t ), - pH( t ) ) O H~( q~( t ), p~( t ) ) 
epic(t) ep~i(t) 

( ~ ) t  = ( ~ )  -t = ~H~(qI(-t),p~(-t))~q~(_ t) 

O H~( q~( t ), - p~( t ) ) 8 H~( qH( t ), p~( t ) ) 
Oq~( t ) Oqn( t ) 

For this to be true for all the solutions q~(t), p~(t), the Hamiltonian of the 
system lI should be obtained from the Hamiltonian of system I by changing 
the signs of the momenta. If  we are considering the time development of the 
same system then the Hamiltonian must be invariant under this operation. 
This is what happens in many cases of physical interest, when for example 
it is quadratic in the momenta. We say that the equations of motion are 
invariant under time reversal. Quantitatively, we may say that the time 
reversal invariance in classical mechanics is a consequence of the invariance 
of the equations of motion under the transformation t - + -  t. In this way 
d/dt -+ -d /d t ,  q -+ q, (1 ---> -el, P ~ -P ,  andp  -+p,  and if the Hamiltonian is 
left invariant by the transformation, Hamilton's equations are invariant. 

Nevertheless there are very important classical systems evolving in the 
presence of external fields. Then the invariance holds or not according to the 
behavior of the external forces under time reversal. In particular, and referring 
to Fig. 1, the invariance holds if the external forces for ru at time t, are the 
same as the external forces for r~ at time - t .  A simple example where it is 
not so is the case of the frictional forces because these forces change sign in 
the reversed motion. Another simple example is the motion of a charged 
particle in a time-independent magnetic field. Due to the Lorentz force 
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Fig. 2. Time reversal trajectories of a charged particle in a magnetic field. The field is 
assumed normal to the plane of the page. 

changing sign with inversion of the velocity, time reversal invariance does 
not hold. The  situation can be visualized in Figure 2. 

The difficulty is obvious if we write, for example, the Hamiltonian 
describing a nonrelativistic particle in an electromagnetic field 

H={lIp-~A(r,t)]2+eAo(r,t)} (1.4) 

where A is the vector potential and Ao is the scalar potential. 
A is itself created by charges in motion. I f  we incorporate these charges 

in our system, we change by time reversal the sign of  A, and therefore the 
magnetic field, but the electric field generated by the charges, remains the 
same. 

The scheme fails if we are interested in studying the motion of a charge 
in a fixed external field. 

What  we mean is that, if the charged particle is moving in an external 
field, to have a time reversal invariant Hamiltonian we have to accept a more 
general definition of the time-reversed state: 

rn(t) = r i ( -  t) 

pxi(t) = -- PI(-- t) 

A~(r, t) = - A~(r, - t) 

A0n(r, t) = Ao~(r, - t) 

Maxwell's equations are, in particular, unchanged under time reversal. 

2. T H E  ROLE OF T I M E  IN QUANTUM M E C H A N I C S  

The Schr6dinger formulation of quantum mechanics is based on a 
description where the state vector moves about in Hilbert space, as time 
develops. 

Assuming that no measurements are made, an isolated system evolves 
in a uniquely predicted way. In the case of an isolated system the Hamiltonian 
is time independent and the time evolution operator 

U ( t ) =  exp ( - ~ -  H t }  (2.1) 
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where t is a parameter  which may take any value from -oo  to +0% has the 
job of "driving" [r in Hilbert space. This transformation operator is 
similar in form to the operator exp {-(i/h)pa}, where a is a real parameter. 
This operator, when acting on the ket Ix'), corresponds to the eigenvalue 
x' + a which may be any value from - c o  to +oe. That is, the spectrum o f x  
is continuous and extends from - m  to +m.  Analogously the unitary operator 
exp {(i/h)xb} corresponds, when acting on the ket [p'), to eigenvalues of  p 
which may have any value from - o e  to +c~. We could ask (Pauli, 1958) 
at this stage if there is a time operator T, generator of energy displacements, 
such that exp {(i/h)Te}, with e an energy parameter, when applied to a 
ket IE) would correspond to an eigenvalue E + e of  the Hamiltonian H. 
Similarly, to the x-p problem, if such a time operator T existed, corre- 
sponding to a commutation relation [7, H]  = ih, a continuous spectrum of 
energy would result from - o e  to +c~. The occurrence of discrete eigenvalues 
of  H,  which imply that the spectrum of H is bounded from below, E > Em~n, 
invalidates the hypothesis that such an operator T exists. So energy and time 
appear in quantum theory on a completely different footing: the energy is a 
dynamical variable but the time is a parameter  and does not correspond 
to the eigenvalue of an Hermitian operator. In particular the time-energy 
uncertainty relation has to be put in a different way from the coordinate- 
momentum uncertainty relation. 

In a nonisolated system, H is time dependent and U(t) has not the simple 
form of (2.1), but the time evolution of the state vector Ir is still given by 
the Schr6dinger equation 

H(t)[~b(t)) = ih c3lr (2.2) 
Ot 

Some care is necessary when writing an expression like 

0 (2.3) H =  ih ~--[ 

The Hamiltonian is an operator whose form is determined by the properties 
of  the system and is a function of operators like coordinate and momentum. 
The Hamiltonian H is an operator in Hilbert space, but ih(O/O t), which acts 
on the family ]r of a continuous parameter t, is not an operator in Hilbert 
space. What  is involved in equation (2.2) is to find a parametrization of the 
family Ir in Hilbert space so that H acting on the state vector I~b(t)7 gives 
the same result as ih(~/~t) acting on Ir Let us see this point with a little 
more detail. An operator A in Hilbert space is determined, only, by its effect 
on the basis vectors [rp~) 

B 
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Writing the state vector [~b(t)) as 

I@(t)) = ~ c,(t)l~a) 
B 

where c~(t) stands for the amplitude to be in the base state Iq~B) at the time t, 
Schr6dinger equation tells us that 

ih dc~(t) = ~ H.ec~(t ) (2.4) 
dt 

with 

3. TIME REVERSAL IN QUANTUM MECHANICS 

We shall discuss the operation known as Wigner time reversal, first 
introduced by Wigner in 1932. 

To start with, let us suppose that 14~(t)) is a solution of the Schr6dinger 
equation 

Hl~(t)) = ih ~[~b(t)) (3.1) 
~t 

with H a time-independent Hamiltonian. 
If we replace t by - t this equation becomes 

Hld~(- t ) )  = - i h  ~l~b(-t)> 
~t 

showing that the Schr6dinger equation is not invariant under the transforma- 
tion t -+ - t. 

For comparison, let us consider the heat-conduction equation, which 
also involves a first-order time derivative, 

~T 
3--[ = kV2T (3.2) 

where k is the thermal diffusivity and T the temperature. This equation 
reflects an asymmetry in time in the process of, say, the distribution of 
energy when two pieces of metal at different temperatures are placed in 
contact with each other. But in spite of both equations (3.1) and (3.2) being 
of first order in time, the presence of i in the Schr6dinger equation not only 
allows periodic solutions, but also enables the original form to be restored 
by taking its complex conjugate. In fact, if H is real, 

H I ~ ( - t ) ) *  = ih ~]~(- t ) )*  
~t 

and [~b(-t))* satisfies the same Schr6dinger equation as kb(t)). 
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The invariance would be assured if besides replacing t by - t ,  we 
consider the effect of the operator complex conjugation to reproduce the 
form of the Schr6dinger equation. That is, even if I~b(-t)) is not a solution 
it is possible to find an antilinear operator that transforms I~b(-t)} into the 
time-reversed solution 14R(t)} of the Schr6dinger equation. 

As required, this transformation ensures that if the system is in a time- 
reversed state I~bR(t)), the probability of finding it in a state 14R(t)) is equal 
to the probability of finding it, at the time - t, in the state 14(t)) when the 
system is known to be the original state [~(t)). In fact, as 

(4~(t)l@~(t)) = ( 4 ( -  t)]@(- t))* (3.3) 

we have 

[(4n(t)14u(t)}[ 2 = 1(4(-  t)l~b(- t))[ ~ 

Without alteration in the result, and for reasons that will shortly be 
clarified, we shall include a unitary operator U in the definition of the time 
reversal operator 

14,R(t)} = u l r  = U X l r  = J l r  (3.4) 

with K the complex conjugation operator. As we shall see, the choice J -  = K 
is only correct in a particular representation, Y = UK being a more general 
time reversal operator. 

The operator Y = UK is antiunitary, i.e., is antilinear and preserves the 
norm 

= <41r (3.5) 

The effect of the operator K depends on the representation used. Con- 
sidering the particular basis vectors corresponding to a representation, the 
state vector is represented by its coefficients. By definition lr is the 
vector obtained taking, on the same basis, the complex conjugate of these 
coefficients. If  

1r = I a , > < a , l r  
f 

then 

= 

i 

We also define the complex conjugate operator as 

O* = lab(adOlab*(a l 
t , j  

Since the operation of complex conjugation carried out twice is equiv- 
alent to the identity operation, K 2 = I and therefore K = K-  1 we may write 
y - 1  = KU*. 
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Summarizing, and in more general terms, let Ir be a solution of the 
Schr6dinger equation 

H ( t ) l r  = ih elr 
(3t 

Considering the equation 

H * ( -  t ) l r  t))* = ih (31r t))* 
(3t 

if there is a unitary operator U such that 

Y H ( - t ) J  - - z  = U H * ( - t ) U *  = H ( t )  (3.6) 

we may write 

(3ulr 
U H * ( - t ) U * U I r  = ih (3t 

in the form 

H(t ) [ r  = ih 8[r 
(3t 

If [r is a solution, ICR(t)} = Y- I r  is a solution. 
The unitary operator U depends on the nature of the Hamiltonian and 

like K depends on the representation used for the wave function, as we shall 
see in examples which will later be considered. 

Now we shall consider for a single particle state the real expectation 
values of the coordinate and momentum operators. By analogy with the 
classical problem we would like the transformation properties of the operators 
r and p, under time reversal, to be such that 

(r  t)lrlr t)} = @~(t)[rlCR(t)) (3.7) 

( r  t ) lp [ r  t ))  = - (r (3.8) 

Remembering the classical definition of time-reversed states this is exactly 
what we should expect when comparing the expectation values for the state 
lCR(t)) with the expectation values for the state Ir at the time - t .  We 
shall see next that the transformations 

J - r J  --1 = r, ~--py-1 = _ p  (3.9) 

satisfy the results (3.7) and (3.8). In fact, 

( r  t ) [ r [ r  t ))  = ( r  t ) [ (Y-  1J-r) l r  t)} 

--- ( @ ( -  t)I~-'- 1) r (J t r  ( -  t))) --- @n(t)lrlCR(t)) 
and 

( r  t ) [p l r  t))  -- ( r  t ) [ ( J - ~ p ) [ r  - t ))  

= - ( ( r  t ) l N -  1 ) p ( J l r  t ) } )  = - ( r  
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The t ransformation properties (3.9) also preserve the commutat ion  

relation 

[q~, pj] = iha~j 

In the same way the t ransformation properties for the orbital angular 
momentum 

Y L J ' -  1 = _ L~ 

keep invariant commuta t ion  relations as 

[Lx, y] = ihz 

[Lx, p~] = ihp~ 

[L~, Lv] = ihL~ 

Even if the spin has no classical analogous, its angular momentum properties 
suggest that  it must  t ransform like the orbital angular momentum 

YSi~-'-- 1 = _ a, i 

As the time is just a real parameter  the time reversal operator  does not 

act on t: 
J ' t J  "-1 = t 

We shall now discuss some relevant cases. 
(a) The Hamil tonian describes a spinless particle. 
Let us consider in the first place the coordinate representation. 
We may write 

J-r~b = Ur~b* = rY~b = rU~b* 

and so U commutes  with the operator  o f  the coordinates. 
In  the coordinate representation p = - i h V  and, as U is a linear 

operator,  

J ( - i h V ) ~ b  = ihUV~* = ihVJ '~  = ihVU~* 

it follows that  U commutes  with r and V and so it cannot  be either a function 
o f  the coordinates or  a differential operator  of  the coordinates. It  follows that  
U has to be, in the coordinate representation, equivalent to the multiplication 
by a constant  o f  modulus unity. The operator  U is only determined up to a 
phase factor. In  fact, since we can always multiply the wave function by a 
phase factor  we can combine the effect o f  the operator  U with a further phase 
factor. So we can choose U = 1 and write in the coordinate representation 

~ - ' = K  

and 

~bR(r, t) = ~b*(r, -- t) 
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and if H is not explicitly time dependent the condition U H *  U -  1 = H for a 
spin-independent Hamiltonian in the coordinate representation, is simply 

H* = H (real) 

In the momentum representation r = ihVp and K p K - 1  = p,  = p. We 
may note that we cannot say that r or p are real or imaginary without 
specifying the representation. 

The time reversal operator in the momentum representation cannot be 
written simply as K. We should write 

J -=  U,K 
with the definition 

U ~ p U ~ *  = - p  

Thus U~ is simply the operation of replacing every momentum p by - p .  
So, we write 

~bR(p, t) = ~b*(-p, --t)  

We obtain 

J - r 3 " - -  ~ = U p K ( i h V p ) K U p *  = i h V ,  = r 

y p y -  1 = U ,  K p K U ~  t = _ p 

and of  course, the condition U H *  U -  ~ = H is written 

U p H * U ;  1 = H 

If, for example, the Hamiltonian contains terms of interaction with an 
electromagnetic field, it is obvious that in the coordinate representation 
U = UA where 

UAA(r, - t )  U 2  ~ = - A(r, - t) (3.10) 

and in the momentum representation 

u =  v~uA 

(b) The Hamiltonian describes a nonrelativistic spin-�89 particle. 
As we know the nonrelativistic spin-�89 theory requires a two-component 

wave function, corresponding to the two degrees of freedom of the spin. 
Using the coordinate representation we have only to determine U~ in 

spin space. In accordance with previous considerations we may write 

U o K ~ K -  1 U g  1 = _ e 

and using the Pauli matrices in the usual representation 

. - -(o -;), . =  (1 ~ ~ (,.11, 
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the operator U, must satisfy 

V a ( l  x U J  = - f ix  

U o % U ~  t = % 

S ~ ( r z U  ~ t = - -  (7 z 

and we may write U, = e~O%, with 3 an arbitrary phase. A choice that makes 
Uo real is 

( ;) (3.12) 

We may write in the It, rn~) basis 

3 -  = i % K  (3.13) 

Incidentally, as we shall see, this is also the form of the time reversal operator 
in Dirac theory. 

If  H does not depend explicitly on time, it is invariant under time reversal 
provided that 

%H*a~ = H (3.14) 

We may note that once sy = (h/2)% we may write U~ as a rotation by 
- ~  about the y axis in spin space. In fact 

R y - l ( ~ ) = e x p  ~rs~ = e x p  1~% = I c o s ~ + i % s m ~ = i % =  U~ 

For  a system of N spin-�89 particles 

N 

S r = U 1-~ % ( n ) K  (3.15) 

(c) The Hamiltonian describes a relativistic spin-�89 particle. 
For  a particle in an electromagnetic field (A0, A) we can write Dirac's 

equation in Hamiltonian form: 

H r  = i h  ~ t  - c ~ .  p -  

where the wave function r has four components (it is not a four-vector) and 
a k and/3 are 4 x 4 Hermitian matrices acting on spin space and satisfying 

a~a z + a'a k = 2~ ~z (k, / = 1, 2, 3) 

~k~ + ~ k  = 0 

(~)~ = ~ = I 
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With the help of Pauli's matrices ~k and the 2 • 2 unit matr ix/ ,  they 
are, written in Dirac's representation, 

a k =  (a O Ok), /3= (~ _0i) (3.17) 

The time reversal operator has the form Y = UK, where U contains, 
besides the operator UA which transforms A(r, - t ) ,  an operator UD, acting 
only on the matrices ak and /3, needed to bring the transformed Dirac's 
equation 

ih ~ UD~b*(r' -- t) 
~t 

= { - C U D a * U ~ I . ( p - : A ( r , - t ) )  + U D / 3 * U ~ l m o c 2 + e A o } U o ~ * ( r , - t )  

to the original form. So, it is straightforward that UD should give 

Uo~ ~* U ~ 1 = _ .~ 

u~/3* u ~  1 =/3 

The matrix Up which gives the required transformation properties may be 
written, up to a phase, 

UD = a3a 1 = i~2 (3.18) 

where ~2 is the 4 • 4 matrix 

(o o) ~2 = (3.19) 
O" 2 

So, we obtain a formally similar result to the nonrelativistic case. 
We could have considered Dirac's equation in covariant form 

where 

and 

7 ~  

In Dirac's representation 

With this choice 7 0 is Hermitian but the 7 ~ are antiHermitian matrices. The 
anticommutator of 7" and 7 ~ satisfies 

7"7 ~ + 7~7" = 2g" ~ 
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with g"~ the metric tensor 

- 1  0 gIh'9 

0 - 1  

0 0 - 

Considering the transformed equation 

(UvT~ ihO-~--_ Ox ~ ceA~176 

+ UD(--y~*)U;~ 1 ih ~x ~ c 
k = l  

the matrix UD which recovers the original form may be written, up to a phase, 

Up = ylya 

and we may write besides the operator UA 

J- = ylTaK = i~2K (3.22) 

4. T H E  A S S O C I A T I O N  OF S Y M M E T R Y  O P E R A T I O N S  W I T H  
C O N S E R V A T I O N  L A W S  A N D  T H E  T I M E  R E V E R S A L  O P E R A T I O N  

I f  a physical system possesses a complete set of commuting observables, 
A, B , . . . , L ,  the corresponding eigenvalues completely determine a state 
la, b . . . .  ,1>, which is unique up to a phase. Allowing each of the eigenvalues 
to vary over its spectrum we obtain an orthonormal basis. When speaking of 
a "s tate"  we shall mean a state [~b) which can be identified by the coefficients 
of  the linear combination of the basis vectors, so that the phase relations 
between those components are known. 

When we can assign to a system a definite state (often called a pure 
state), the set of vectors e~Ol~b> is called a ray and all vectors belonging to a 
ray represent the same physical state. 

The transition probability I<q~l~b)l 2 represents the probability of the 
system known to be in the state [~b) behaving as if it were in state I~b>. 

A symmetry operation (sometimes referred to as invariance principle) 
applied to a state is a one-to-one correspondence which assigns to every 
physical state t~b> another state I#'> in a way that the physical properties 
(transition probabilities and expectation values) are preserved. 

Considering a symmetry operator T 

[r = r [~>  
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we have, if it is either unitary or antiunita 3, 

TT* = T * T  = I 

Clearly, both unitary and antiunitary operators satisfy 

]@~'l~b')l 2--- I~q~I~b)l z (4.1) 

Considering an arbitrary linear operator O (Hermitian or not), since 
the expectation values are preserved, we have for a unitary operator U 

- -  ( , / / I O ' l , / / >  = < 4 , 1 u * o ' u 1 4 , 5  

with the transformed operator 

0 ' =  U O U *  (4.2) 

For an antiunitary operator J -  

- -  < , / , ' l O ' l , / / >  = - -  = 

with the transformed operator 

O' = J-O*~-* (4.3) 

In any case if 

0 ' = 0  

we say that the operator is invariant under the symmetry transformation. 
As we know, a unitary operator that corresponds to a continuous 

transformation can be written as 

U = e ~eA (4.4) 

where E is a parameter that varies continuously and A is a Hermitian operator 
called the generator. With a continuous transformation we can, from the 
identity operation, make a finite transformation out of infinitesimal ones. By 
making e infinitesimal and keeping terms up to the order ~ we may write 

U =  I +  leA + 0(r  2 ) 

I f  the Hamiltonian is invariant under the transformation, we have 

U H U *  = H = H + ie[A, H]  

and the condition is equivalent to 

[A, HI  = 0 

As the rate of  change of the expectation value of an observable is determined 
by the commutator  [A, HI  we see that if the Hamiltonian is invariant under a 
symmetry transformation the expectation value of the corresponding genera- 
tor is a conserved quantity. For example, associated with the momentum, 
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energy, and angular momentum operators we have translational invariance 
in space and time and rotational invariance, resulting in the consequent 
conservation principles. 

Besides the continuous transformation operators we shall consider now 
discrete symmetry operators, by which we mean symmetry operators which 
if applied twice to a physical system leave the system unchanged. To this 
category belong, for example, parity and time reversal. It may happen that 
the symmetry operator is Hermitian and unitary, as the parity operator, and 
in this case if 

PHP* = H, [P, H] = 0 

the operator leads by itself to a symmetry operation and to a conservation 
principle. But the time reversal operator J is antilinear and so there is no 
corresponding conservation principle. In fact, since J "  is antilinear it cannot 
be a Hermitian operator. It does not make sense to associate with 3-  either 
definite eigenvalues or definite eigenstates. Let us assume that the state vector 
I~b) was an eigenstate of J - :  

Jf~b> = al@) 

By multiplication of ]~b) by a phase factor d ~ we obtain the same physical 
state, but applying f we obtain 

f ( d ~ l ~ ) )  = e-~J'i~b ) = e-~ZOa(d~t~)) 

So, resulting from its antilinearity, 3-" cannot have a definite eigenvalue. 
Therefore .Y" cannot be an observable and J -  does not give rise to a quantum 
number as parity does. 

However, the operator y 2  is a linear operator. 
If  the operator ~-" is carried out twice in any state, we should obtain, 

independently of a change in phase, the same state apart from a factor 

~--2l~b) = club) (4.5) 

That is, all states are eigenstates of Y 2, which is therefore a constant multiple 
of the unit operator and commutes with all observables 

~- -2  = cI  

or 

and so 

J = c y t  

which substituted in the previous equation gives [c] 2 = 1, and so c is just a 
phase factor. 
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As 

~- tY = I 

we may write 
y 2  = c~--ty 

and acting with Y from the left and Y* from the right, we obtain Y c Y *  = c, 
that is, c* = c and therefore c = + 1. So we may write 

y 2  = + i  (4.6) 

This result does not depend either on phase conventions or on the 
representation. 

Seeing that J -  is a symmetry operator of the Hamiltonian 

J -HY*  = H 

we can expect the occurrence of additional degeneracies in the energy eigen- 
states. I f  the Hamiltonian of the N spin-�89 particles is invariant under time 
reversal and if 1r is an energy eigenstate, from 

m[r = E~[r 

we have 

or  

HYIG> = &~IG> 

So if I ~ )  is an eigenstate of a time reversal invariant Hamiltonian with 
energy En, the state Y[r is also an eigenstate of H with energy En. 

I f Y  2 = - I  we can say that the state ~-[r  is essentially different from 
[r implying a twofold degeneracy known as Kramer's degeneracy, but if 
y 2  = + I we cannot say, without explicit details of the state, if they are the 
same state (up to a phase) or not. To examine this point we could go back to 
(3.15) and write for a system of N spin-�89 particles 

j - 2  = (_)N I 

The + sign applies to an even number N of spin-�89 particles and the - sign 
to N odd. But we could look at the problem considering, to be more precise, 
eigenstates IaEJM> of a time reversal invariant Hamiltonian, which are 
simultaneous eigenstates of j2 and dz, with c~ representing the set of all the 
other quantum numbers not related with the rotational properties of the 

state. 
Resulting from (3.15) it is possible to choose the phases of the many- 

particle state so that 

g-IaEJM> = (--)'+MIaEJ- M> 
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It  follows that 

5-2I,~EJM ) = ( -  )2Jlo, EJM) 

With J integer we have 5 -2 = + I  and we cannot say, without further 
specification, ifs-Io~EJM) is, up to a phase, the same state as Ic~EJM} or if it 
is a different state. 

With J half-odd integer we have 5-2 = _ I and then 5-1 ~EJM) is always 
different from I~EJM) (they are linearly independent), the stationary states 
are pairwise degenerate, and it can be shown that they are orthogonal. In  fact, 

( (~1 5 -* )1 r  = ( ( r 1 6 2  = ( ( ~ 1 5 - + ) 5 - 2 1 ~ }  = - ( ( 4 , 1 5 - + ) 1 r  = 0 

Since 5-s commutes with all observables 

5-2A5--2 = A 

and so the matrix elements of all observables connecting states with J 
integer (J~) and J half-odd integer (Jh~) vanish. In fact 

< J, [ A I J~,> = < J , ] ~ - ~ A Y ~ I J ~ b  = - < J, f A I J~& = 0 

So no transitions between any pair of  such states, belonging to different 
eigenvalues of  Y 2, can occur and so no physical measurements can determine 
their relative phase. There is said to be a superselection rule between the two 
sets of  states, forbidding the comparison of their relative phases. 

A superselection rule results from a conserved observable which com- 
mutes with all observables, which is equivalent to saying that all physical 
states are sharp eigenstates of the conserved observable. So we cannot 
observe in nature a physical state superposition of states corresponding to 
different values of  5-L 

We can say that the operator which is in the origin of  the superselection 
rule separates the Hilbert space of physical state vectors into subspaces which 
are incoherent, and a linear combination of states of  these subspaces, with 
known relative phases, is not physically realizable. 

The ordinary selection rules, related to a physical process between 
subspaces belonging to different eigenvalues of a conserved observable, 
differ from the superselection rules because then not all physical states are 
eigenstates of  the conserved observable. 

The existence of symmetries, which must be checked experimentally, is a 
powerful tool to derive predictions, to find quantum numbers, to establish 
selection rules and useful phase relationships, and to restrict possible terms 
in the Hamiltonian, even if the dynamical theory involved is not fully 
known. 
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